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ABSTRACT 

 

Superplastic deformation has a significant industrial application value due to the large 

elongation, which allows manufacturing parts with complex geometries but happens at elevated 

temperatures and low strain rates. Therefore, it requires alloys with fine grain size but whose 

grains tend to grow at processing temperatures. Second-phase particles can promote grain 

pinning to keep a fine grain size structure during superplastic forming. In 5083 aluminum alloy, 

Al6Mn particles make grain pinning. There are two types of 5083 aluminum alloy: conventional 
with manganese range from 0.4 to 1.0 wt.% and superplastic with manganese between 0.64 and 

0.86. It was observed in bibliographic research that the 5083 superplastic has a higher 

chemical concentration of manganese than the conventional one. However, no references were 

found covering manganese concentration in grain size stability. This work shows grain size 

evolution at a constant temperature of 5083 alloys with different manganese concentrations. 

After being submitted at 450 ºC for 24 h, the sample without manganese presented ~ 26 µm 

grain size; this value decreases to 14 µm with 0.4 wt.% of Mn and 11 µm in samples with 

composition between 0.6 and 1.0 wt.%. Thus, the most indicated manganese concentration to 

prevent grain growth during superplastic forming at 5083 alloys is between 0.6 and 1.0 wt.% 

Remember that other properties besides the grain size must be measured to define better an 
alloy's optimal chemical composition (e.g., corrosion, wear, and mechanical resistances). 

Other results on grain growth kinetics are presented in the body of work. 
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INTRODUCTION 

 

The mobilization of the governments to achieve the CO2 emission reduction targets determined 

in international conferences such as COP26 has pressed corporations of all sectors to adopt 

definitions and strategies concerning the ESG Agenda. It is often reflected in the search for 

more efficient processes and less polluting raw materials for the industrial environment. In this 

context, the automotive industry sees the substitution of steel for aluminum alloys in automotive 

vehicle fairings manufacturing as an alternative.  

Aluminum alloys show advantages over steel in reducing CO2 emission because of their lower 

specific weight, better aerodynamics, and the economy in the assembly of automobiles. The 

last two factors are related to the feasibility of producing parts with complex geometry that 

improve aerodynamics and still save time and energy in assembly, reducing the need for 
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welding and riveting(1). The advantages are even more significant for aluminum alloys with a 

superplastic character. 

Superplasticity is the capacity of certain materials to exhibit high elongation before failure, 

allowing the manufacture of parts with complex geometry with a reduced number of steps or 

intermediate heat treatment processes(2). Typical superplastic elongations are higher than 300%, 

but some metal alloys can overcome 5,000%(3). 

The phenomenon of superplasticity typically occurs by deformation via grain boundary 

sliding rather than via dislocation slip. Since grain boundary sliding is a surface phenomenon, 

it requires fine or ultrafine grain size(4). However, the phenomenon demands high working 

temperatures and low strain rates, which are known to induce grain growth due to the 

prolonged times in elevated temperatures(2-5). So, grain growth kinetics is an essential subject 

in the superplasticity area. 

The equation below describes the isothermal grain growth kinetics of many metallic alloys  

 

𝐷 = 𝐷0 + 𝑘. 𝑡𝑛                                   (A) 

 

Where D is the average diameter, D0 is the initial diameter, k is a constant, and n is an exponent 

that is usually close to 0.5 and depends on the alloy's temperature(6). 

To solve this trade-off, chemical elements in alloy manufacturing keep the grain size small even 

at high temperatures for a prolonged time. These elements can form stable particles, commonly 

originating during solidification, that may act as grain boundary pinning(5-7). By that, the grain 

growth rate is reduced to stabilize the grain size even in a prolonged time of tens of hours.  

The 5083 SP aluminum alloy, well established in the industry, has superplastic characteristics 

stretching around 350%. Since its first application in 1986, thousands of components have been 

produced, and there are several sheet manufacturers of this alloy, mainly in the USA, Europe, 

and Japan(8). The primary particle that pins the grain boundary in this alloy is Al6Mn(9). 

Therefore, manganese is a critical component for the exhibition of the superplastic phenomenon 

in that case.  

ASTM regulates that manganese concentration in the conventional 5083 aluminum alloy varies 

between 0.4 and 1.0 wt.%(10). On the other hand, a bibliographic survey showed that the 5083 

superplastic aluminum alloy has a narrower range for the Mn concentration, between 0.64 and 

0.86 wt.%(11). However, no reports explaining the different Mn concentrations for the 5083 SP 

and conventional 5083 aluminum alloys were found in the consulted literature. Therefore, this 

work aims to evaluate the influence of Mn concentration on the grain growth kinetics of 5083 

aluminum alloy to answer that literature gap. 

 

MATERIALS AND METHODS 

 

Five AA 5083 alloys with different Mn concentrations were produced from primary aluminum 

and the following master alloys: Al with 35.0 wt.% of Mg; Al with 17.4 wt.% of Mn; and Al 

with 12.0 wt.% of Si. At first, the primary aluminum was melted and held at 750 ºC using a 



 
 

resistance metal melting furnace, and 15 ppm of Be was added to avoid magnesium oxidation. 

Then, the master alloys were added and kept for 15 min. After it, the melting baths were 

degassed using Hexachloroethane, and then they were poured into a water-cooled copper 

crucible with 127 x 54 x 13 mm. The nominal compositions are presented in Table 1. 
 
Table 1: Nominal chemical compositions of AA 5083 with different manganese concentrations. 

Sample Mn / wt.% Mg / wt.% Si / wt.% 

1 0.0 4.6 0.3 

2 0.4 4.6 0.3 

3 0.6 4.6 0.3 

4 0.8 4.6 03. 

5 1.0 4.6 03. 

 

The ingots were machined to remove superficial defects and improve the rolling quality. Then, 

they were submitted to homogenization heat treatment at 500 ºC for 8 h. Ingots were hot sheet 

rolled at 420 ºC to 13,75 mm in thickness and cold-rolled at room temperature to 2.5 mm, 

resulting in 81.8% of work hardening. Next, the sheets were annealed at 350ºC for 30 minutes, 

and they were cut into samples of 1 cm × 1 cm and submitted at 450 ºC for 0 (untreated), 1, 2, 
4, 24, and 48 h to investigate grain growth. Finally, the samples were heat-treated at 130 ºC for 

15 h to decorate grain boundaries with the Mg2Si etchable phase.  

After usual metallographic preparation, the samples were etched at an aqueous acid solution 

containing 10 vol.% phosphoric acid at 50 ºC per 15 min. Finally, the samples were observed 

in an optical microscope. Following the standard ASTM E112-13(2021), the Lineal Intercept 

Procedure was applied to 5 images at each condition to obtain the grain sizes. 

The grain size results were treated in the software R©, following the statistical model Analysis 

of Variance (ANOVA) for one factor, the Mn wt.%, with five levels eq.(B). The hypothesis of 

residuals normality was evaluated with the Shapiro-Wilk test, and was possible to fit a 

regression model (12). 

 
μi = μ + τi  i = 1, 2, 3, 4 , 5                                  (B) 

 

Two analyses were performed, the first evaluated the effect of manganese concentration on 

primary grain size, and the second evaluated the grain growth behavior at different times for 

each alloy composition. 

 

RESULTS AND DISCUSSION 

 

Figures 1 a)-c) show optical microscopy images of some samples before grain growth treatment, 

and Figures 1d)-f) show images after 48 h of heat treatment. It is observed that the initial grain 

size decreases with the increase of manganese concentration and that grain growth occurs in all 

samples, as expected.  

 



 
 

 
Figure 1: MO image in the rolling direction of the selected samples of 5083 alloy chemical etched, the 
rolling plane is parallel to the page, and the rolling direction is horizontal to the page: a-c) Before grain 

growth treatment; d - f) After 48 h of grain growth at 450 ºC. 

 

In this study, sheets were manufactured with five different manganese concentrations submitted 

to isothermal grain growth at six other time intervals, totaling 30 samples. Five images were 

obtained per sample, and four lines were drawn per image to measure grain size. Thus, 600 

grain size points were obtained. Figure 2 shows the average grain size as a function of 

manganese concentration and grain growth time.  

Figure 2 shows the grain size curve as a function of manganese concentration before grain 

growth heat treatment. It is observed that the initial grain size decreases significantly with the 
increase of manganese concentration. Thus, manganese additions are efficient in refining 

grains. The correlation between initial grain size and manganese concentration of Al5083 alloy 

was analyzed. The Shapiro-Wilk test returned a p-value>0.05, so the hypothesis of data 

normality may be accepted, and regression can be set(12). The characteristic equation found for 

the system was: 

 

𝐷 = 12.810 − 6.446. 𝐶𝑀𝑛
0.5                                    (C) 

 

Where D is the diameter, CMn is the manganese concentration in weight percentage, with 

adjustment R2 equal to 88% and residuals p-value = 0.78. These results prove the residual 

normality and adjustment of the experimental model. This equation has a physical meaning up 
to 3.949%p Mn; above this, the grain size is negative. Once equation (C) has a minimum at 

3.947 wt.% Mn, we suggest that further research must be performed with manganese 

concentration superior to 1.0 wt.% Mn. 

 



 
 

 

Figure 2: Average grain size as a function of manganese of samples of AA 5083 before grain growth 

heat treatment. 

 

Figure 3 presents curves of average grain size as a function of the grain growth time for samples 

with different manganese concentrations. First, ANOVA followed by Shapiro-Wilk's test, was 

performed to assess the normality of the residues. The result of the Shapiro-Wilk test is 

presented in Table 2. It is observed that all p-value results are greater than 0.05, so the 

hypothesis of data normality is accepted, and regression can be performed (12). The data 
followed the model proposed in equation A. The values of D0, k, and n are also presented in 

Table 2. In all cases, the adjustment of R² for the characteristic equation was greater than 80%, 

see Table 2. The model adequately describes the system's behavior (12). The index n was little 

influenced by manganese concentration. On the other hand, the k constant decreases with the 

increase in manganese content.  

 

 

Figure 3: Average grain size as a function of grain growth time of AA 5083 at different manganese 

concentrations.  

 



 

Table 2: Parameters obtained from regression model using equation A. 

Mn / % P-value R² / % D0 / μm k n 

0.0 0.2992 84.41 14.02 4.02 0.34 

0.4 0.1655 82.87 8.98 2.54 0.22 

0.6 0.9789 82.83 7.60 1.40 0.34 

0.8 0.614 84.13 6.80 1.73 0.29 

1.0 0.6134 83.55 6.49 1.73 0.30 

 

The grain growth rate curve is represented in Figure 4. For all samples, the grain growth rate 

decreases over time, as expected, because the larger the grain size, the smaller its growth trend. 

The samples with manganese addition showed a lower grain growth rate than those without 

addition. It indicates that the addition of manganese slows grain growth. However, the grain 

growth rate is very similar between 0.4 and 1.0 wt.% of manganese; thus, additions above 0.4 
wt.% will not add extra delay in grain growth. However, the increase in manganese 

concentration decreases the initial grain size, as discussed above. 

 

 

Figure 4: Grain growth rate as a function of grain growth time of AA 5083 at different manganese 

concentrations. 

Figure 5 shows a colormap of the average grain size according to manganese concentration and 

grain growth time. The blue areas indicate the conditions of refined and thermal-stable grains, 

which is a beneficial characteristic for observing the superplastic phenomenon. In addition, the 

alloys with 0.8 and 1.0 wt.% Mn have the best results, which after 48h remain with an average 

grain size between 10.5 and 12.5 μm, indicating that their corresponding 5083 alloys are strong 

candidates to present a superplastic behavior concerning their grain thermal stability.   

 



 

 
Figure 5: Color map of the average AA 5083 alloy grain size according to the Mn wt.% grain growth 

time.  

 

 

CONCLUSIONS 

 

Metallic alloys must present a refined and stable grain size at high temperatures, among other 

factors, to exhibit superplasticity. Therefore, it gives importance to this work on the influence 

of manganese concentration in the 5083 aluminum alloy on microstructural refinement and 

grain growth kinetics.  

Samples with manganese concentrations ranging from zero to 1.0 wt.% were submitted to 

81.8% of cold rolling, annealed at 350 ºC for 30 min, and thermally treated at 450 ºC for 1, 2, 

4, 24, and 48 h for grain growth. 

It was shown that the initial grain size decreases gradually from 12.77 to 6.48 μm with the 

increase in the amount of manganese. Although therefore, the relationship between initial grain 
size and manganese concentration could be modeled by equation (C), which suggests that 

additions higher than 1.0 wt.% of manganese can further decrease the initial grain size. 

All samples with manganese addition showed approximately equal grain growth rates but were 

lower than those without manganese. Finally, manganese additions higher than 0.4 wt.% 

promote grain refinement. Still, above this composition, the addition of manganese does not 

amplify the phenomenon of grain pinning in ingots manufactured by the methodology of this 

work. 

These results are essential to understanding the effects of manganese composition on grain 

refinement and thus optimize the alloy's superplastic properties. However, these results should 

be used cautiously, as other factors may compromise superplastic capacity. For example, 
manganese additions may promote the formation of coarse second-phase particles that cause 

cavitation voids that compromise alloy ductility. 

Future work is needed to analyze the influence of manganese concentrations greater than 1% 

on grain size, ductility, and cavitation in 5083 alloys.  
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